skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Geurink, Jeffrey_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An analytical model is developed for mean annual groundwater evapotranspiration (GWET) at the watershed scale based on a three‐stage precipitation partitioning framework. The ratio of mean annual GWET to precipitation, defined as GWET ratio, is modeled as a function of climate aridity index (CAI), storage capacity index, the shape parameter ‘a’ for the spatial distribution of storage capacity, and the shape parameter ‘b’ for the spatial distribution of available water for GWET. In humid regions, GWET ratio tends to increase with increasing CAI due to the limited energy supply and shallower depth to water table (DWT) for a given storage capacity index. In contrast, in arid regions, the GWET ratio tends to decrease as the CAI increases because of the limited water availability and the presence of a deeper DWT for a given storage capacity index. In arid regions, the GWET ratio decreases as the parameter ‘a’ increases, mainly because of increased ET from a thicker unsaturated zone in environments with a deeper DWT. GWET ratio increases as parameter ‘b’ increases due to more watershed area with larger available water for GWET. The storage capacity index and shape parameters are estimated for 31 study watersheds in Tampa Bay Florida area based on the simulated GWET from an integrated hydrologic model and for 21 watersheds from literature. A possible correlation has been identified between the two shape parameters in the Tampa Bay watersheds. The analytical model for mean annual GWET can be further tested in other watersheds if data are available. 
    more » « less